On one level, it's easy enough to understand what chips go in the computers we use - they either have AMD or Intel CPUs. But the CPU alone doesn't really describe the performance of the system - it also depends on lots of other features, notably the chipset that supports the CPU, plus things like the memory, graphics, and networking components, not to mention the software loads.
To make things even more confusing, you often hear tech reports talk about "platforms", which from the hardware perspective usually means a combination of a CPU, supporting chipset, and sometimes the networking components and/or software as well. This first became popular with "Centrino," which was and is Intel's way of describing a system with its CPU, chipset, and wireless networking, and the platform concept has made its way into both vendors codenames, first on mobile systems and more recently on desktops and servers. To make things even more confusing, sometimes the vendors call their chipsets "platforms" and sometimes they use the same name for the chipset and the platform, or for the CPU and the platform; and sometimes they don't.
I'll admit it - I'm often confused by all the platform names, CPU code names, and chipset code names I hear, so as best as I can, here's the desktop list -- what is currently on the market; and what Intel and AMD are planning in the next year or so: (The notebook list will follow shortly).
Intel-based Desktop: Intel's current CPUs are in the Core 2 family, with both quad-core and dual-core chips available. Most of the current chips are produced at 45nm, and are based on the "Penryn" design. The desktop chips are known as "Wolfdale" (dual-core) and "Yorkfield" (quad-core), although older 65nm chips (called "Conroe" and "Kentsfield") are still around.
Intel doesn't really name its current desktop platforms, but its current chipsets are the 3-series (called "Bearlake") and 4-series (called "Eaglelake,") which was introduced at Computex and supports more configurations of PCI Express 2.0. Both are available in a variety of versions, notably the P35 and P45 without graphics and G35 and G45 with graphics. (The G35 includes GMA X3500 graphics, while the G45 includes x4500 Graphics . The newer graphics are supposed to be faster and capable of Blu-Ray playback). All of these chipsets have two basic chips, a "northbridge" (memory controller hub) that controls connections to the memory, to the display, manageability controls, and in some cases integrated graphics; and a "southbridge" (I/O controller hub) that primarily controls communications with the peripheral chips.
This fall, Intel will introduce its new X58 chipset (sometimes called "Tylersburg"), designed to work with the new Core i7 processors (codenamed "Bloomfield" with 4 cores and 8 threads in the Nehalem design). This is aimed at enthusiast and high-end systems, so it will only come in a version without graphics, as such systems always add discrete graphics boards. This will have two chips - a traditional southbridge for I/O communications, and another chip that primarily connects to the PCI Express slots. Core i7 will use the QuickPath Interconnect to connect multiple chips.
For next year, Intel is planning two mainstream desktop versions of this Nehalem-based CPU design, currently slated to go into production in the second half of 2009: a 4-core version called "Lynnfield" and a dual-core called "Havendale." One big difference: Lynnfield will not be available with integrated graphics; but Havendale will be available either with graphics or without. But unlike current chipsets, the graphics components will not be integrated into the motherboard chipset; instead it will be integrated in the processor "package" itself (though not necessarily the CPU die, unlike AMD's announced "Fusion" project.)
These chips will be part of a new platform, which Intel calls "Piketon" which uses a new chipset called "Ibex Peak." Since the Nehalem processors will have an integrated memory controller in the CPU, IBEX Peak is now a single chip that adds the display communications and the manageability engine, in addition to traditional southbridge functions, including support for up to 14 USB 2.0 ports, 8 PCIe lanes, six SATA drives, etc. Intel says that Piketon and similar platforms will have a different interconnect than Core i7's.
Piketon includes vPro support, including anti-theft technology, integrated TPM chip, and advanced management features; while a variation called "Kings Creek" is aimed at consumers instead of business users.
Intel has announced plans to develop products at the 32nm code. If the company keeps its "tick/tock" process on schedule, I would expect to see a shrink of the Nehalem" generation of CPUs to 32nm, sometimes referred to under the name of "Westmere," towards the end of 2009 or early 2010; and the next generation of microarchitecture (sometimes called "Sandy Bridge") about a year later.
AMD-based Desktops: AMD currently has two primary lines of desktop CPUs: Athlon chips, typically dual core design; and Phenom chips, typically labeled X4 and X3. The Athlon is based on a CPU design called "K8," while the Phenom is based on a quad-core design also used in the "Barcelona" family of Operton server chips (I've often heard this referred to as K10, though AMD says that term isn't really current; instead using "10h" in its technical presentions.) Most Phenoms are quad core but in the X3 version, one core is disabled. Both are primarily manufactured on a 65nm process today.
AMD's newest desktop platforms based around the Phenom processors are "Perseus," aimed at commercial users under the Business Class brand, and "Cartwheel" aimed at consumers. Both are based around its AMD-7 family of chipsets. Probably the most interesting of these are the variations with integrated ATI Radeon 3000 graphics as well as a hybrid graphics option, which lets the system use both integrated and discrete chips. There are several variations with different levels of graphics, including the 780G and the higher end 790GX, with integrated Radeon 3300 graphics and support for 2 PCI Express slots for adding discrete graphics and up to 12 USB 2.0 ports and 6 SATA 2.0 drives. The 790 series is part of what AMD has sometimes called the "Spider" platform, aimed at enthusiasts. The numbers typically refer to higher speeds, with the "G" denoting integrated graphics, and the "X" denoting support for more than one GPU - the ATI CrossFire configuration. The 790GX is an unusual mix of both.
AMD also has chipsets that are designed for discrete graphics, notably the 790X, which adds support for HyperTransport 3.0 and PCI Express 2.0 for faster connections to memory and graphics; and the high-end 790FX, which supports up to 4 ATI Radeon graphics cards. Unlike Intel's current chips, AMD's already have integrated memory controllers, so the "northbridge" functions are inside the CPU, rather than in a separate chip.
Later this year, AMD is expected to start manufacturing a 45nm shrink of the quad-core "10h" architecture. While this has been primarily been referred to as "Shanghai" (the name of the server version), desktop versions have been using the code-name "Deneb." I'd expect the server version to come later this year, with the desktop chip following in the first half of 2009.
Next year, AMD is expected to move refresh its platforms to patch the 45nm chips. The new commercial platform will be "Kodiak," the consumer platform will be a refreshed version of "Cartwheel," and the new enthusiast platform will be "Leo."
Wednesday, September 17, 2008
Intel and AMD's New Desktop Platforms
Labels: Intel Amd Desktops
Posted by Keshav Live at 5:20 PM
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment